

1

IAC-04-IAF-U.3.A.05

GENERATING REQUIREMENTS FOR COMPLEX
EMBEDDED SYSTEMS USING STATE ANALYSIS

Michel D. Ingham, Robert D. Rasmussen,

Matthew B. Bennett, Alex C. Moncada
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

{michel.d.ingham, robert.d.rasmussen, matthew.b.bennett, alex.c.moncada}@jpl.nasa.gov

ABSTRACT

It has become clear that spacecraft system complexity is reaching a threshold where customary
methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the
conventional approaches to systems and software engineering based on subsystem-level functional
decomposition, which fail to scale in the tangled web of interactions typically encountered in complex
spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software
specified by systems engineers and the implementation of these requirements by software engineers.
Software engineers must perform the translation of requirements into software code, hoping to
accurately capture the systems engineer’s understanding of the system behavior, which is not always
explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer’s
intent, potentially leading to software errors. This problem is addressed by a systems engineering
methodology called State Analysis, which provides a process for capturing system and software
requirements in the form of explicit models. This paper describes how requirements for complex
aerospace systems can be developed using State Analysis, using representative spacecraft
examples.

1. INTRODUCTION

As the challenges of space missions have grown
over time, we have seen a steady trend toward
greater automation, with a growing portion
assumed by the spacecraft. This trend is
accelerating rapidly, spurred by mounting
complexity in mission objectives and the systems
required to achieve them. In fact, the advent of
truly self-directed space robots is not just an
imminent possibility, but an economic necessity, if
we are to continue our progress into space.

What is clear now, however, is that spacecraft
design is reaching a threshold of complexity
where customary methods of control are no longer
affordable or sufficiently reliable. At the heart of
this problem are the conventional approaches to
systems and software engineering based on
subsystem-level functional decomposition, which
fail to scale in the tangled web of interactions
typically encountered in complex spacecraft
designs. A straightforward extrapolation of past
methods has neither the conceptual reach nor the
analytical depth to address the challenges
associated with future space exploration
objectives.

Furthermore, there is a fundamental gap between
the requirements on software specified by
systems engineers and the implementation of
these requirements by software engineers.
Software engineers must perform the translation
of requirements into software code, hoping to
accurately capture the systems engineer’s
understanding of the system behavior, which is
not always explicitly specified. This gap opens up
the possibility for misinterpretation of the systems
engineer’s intent, potentially leading to software
errors.

In this paper, we describe a novel systems
engineering methodology, called State Analysis,
which addresses these challenges by asserting
the following basic principles:
- Control subsumes all aspects of system

operation. It can be understood and exercised
intelligently only through models of the system
under control. Therefore, a clear distinction
must be made between the control system and
the system under control.

- Models of the system under control must be
explicitly identified and used in a way that
assures consensus among systems engineers.
Understanding state is fundamental to success-

2

ful modeling. Everything we need to know and
everything we want to do can be expressed in
terms of the state of the system under control.

- The manner in which models inform software
design and operation should be direct, requiring
minimal translation.

State Analysis improves on the current state-of-
the-practice by producing requirements on system
and software design in the form of explicit models
of system behavior, and by defining a state-based
architecture for the control system. It provides a
common language for systems and software
engineers to communicate, and thus bridges the
traditional gap between software requirements
and software implementation. The State Analysis
methodology is complemented by a database tool
that facilitates model-based software require-
ments capture.

Paper Outline

In this paper, we discuss the state-based control
architecture that provides the framework for State
Analysis (Section 2), we emphasize the central
notion of state, which lies at the core of the
architecture (Section 3), we present the process
of capturing requirements on the system under
control in the form of models (Section 4), and we
illustrate how these models are used in the design
of a control system (Section 5). We then discuss
the database tool used for documenting the
models and requirements (Section 6). Finally, we
describe the Mission Data System (MDS), a
modular multi-mission software framework that
leverages the State Analysis methodology
(Section 7).

2. STATE-BASED CONTROL ARCHITECTURE

State Analysis provides a uniform, methodical,
and rigorous approach for:
- discovering, characterizing, representing, and

documenting the states of a system;
- modeling the behavior of states and relation-

ships among them, including information about
hardware interfaces and operation;

- capturing the mission objectives in detailed
scenarios motivated by operator intent;

- keeping track of system constraints and
operating rules; and

- describing the methods by which objectives will
be achieved.

For each of these design aspects, there is a
simple but strict structure within which it is
defined: the state-based control architecture (also
known as the “Control Diamond”, see Figure 1).

The architecture has the following key features:1
- State is explicit: The full knowledge of the state

of the system under control is represented in a
collection of state variables. We discuss the
representation of state in more detail in
Section 3.

- State estimation is separate from state control:
Estimation and control are coupled only through
state variables. Keeping these two tasks
separate promotes objective assessment of
system state, ensures consistent use of state
across the system, simplifies the design,
promotes modularity, and facilitates implemen-
tation in software.

- Hardware adapters provide the sole interface
between the system under control and the
control system: They form the boundary of our
state architecture, provide all the measurement
and command abstractions used for control and
estimation, and are responsible for translating
and managing raw hardware input and output.

- Models are ubiquitous throughout the
architecture: Models are used both for execution
(estimating and controlling state) and higher-
level planning (e.g., resource management).
State Analysis requires that the models be
documented explicitly, in whatever form is most
convenient for the given application. In
Section 4, we describe our process for capturing
these models.

- The architecture emphasizes goal-directed
closed-loop operation: Instead of specifying
desired behavior in terms of low-level open-loop
commands, State Analysis uses goals, which
are constraints on state variables over a time
interval. In Section 5, we discuss goals and their
use in high-level system coordination.

- The architecture provides a straightforward
mapping into software: The control diamond
elements can be mapped directly into compo-
nents in a modular software architecture, such
as MDS,1 which is described in Section 7.

In summary, the State Analysis methodology is
based on a control architecture that has the notion
of state at its core. In the following section, we
describe our representation of state, and how we
capture the evolution of state knowledge over
time.

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Figure 1: The state-based control architecture.

3

3. STATE KNOWLEDGE REPRESENTATION

As discussed in the previous section, State
Analysis is founded upon a state-based control
architecture, where state is a representation of the
momentary condition of an evolving system and
models describe how state evolves. The state of a
system and our knowledge of that state are not
the same thing. The real state may be arbitrarily
complex, but our knowledge of it is generally
captured in simpler abstractions that we find
useful and sufficient to characterize the system
state for our purposes. We call these abstractions
“state variables”. The known state of a system is
the value of its state variables at the time of
interest.

Together, state and models supply what is
needed to operate a system, predict future state,
control toward a desired state, and assess
performance. In this section, we focus on
clarifying what we mean by “state,” and describing
how we represent state in state variables. More
detail on our representation of state knowledge
has been previously published.2

Defining “State”

A control system has cognizance over the system
under control. This means that the control system
is aware of the state of the system under control,
and it has a model of how the system under
control behaves. The premise of State Analysis is
that this knowledge of state and its behavior is
complete – that no other information is required to
control a system. Consequently, State Analysis
adopts a broader definition of state than traditional
control theory, for example: in addition to
considering the position and attitude (and
corresponding rates) of a spacecraft to be defined
as state, we would also include any other aspects
of the system that we care about for the purposes
of control, and that might need to be estimated,
such as:
- device operating modes and health;
- resource levels (e.g., propellant; volatile and

non-volatile memory);
- temperatures and pressures;
- environmental states (e.g., motions of celestial

bodies and solar flux);
- static states about which we may want to refine

our knowledge (e.g., dry mass of a spacecraft);
- parameters (e.g., instrument scale factors and

biases, structural alignments, and sensor noise
levels); and

- states of data collections, including the
conditions under which the data was collected,
the subject of the data, or any other information
pertinent to decisions about its treatment.

We note, however, that the internal state of the
control system is not represented by state
variables. A control system may indeed have

internal state; in fact, it usually does. These might
include control modes, records of past operation,
and so on. But this state is not maintained in state
variables. This is in keeping with a basic principle
of State Analysis that distinguishes clearly
between the control system and the system under
control (recall Section 1).

Representing State

Now that we have defined what “state” means, we
consider how to represent it. An important part of
the State Analysis process is to select and
document an appropriate representation for each
state variable in the system. State variables can
have discrete values (e.g., a camera’s operational
mode can be “off”, “initializing”, “idle”, or “taking-
picture”) or continuous values (e.g., a camera’s
temperature might be represented as a real value
in degrees Celsius). Whether continuous- or
discrete-valued, all state variables represent state
as a piece-wise continuous function of time, rather
than as a history of time-stamped samples. This
representation is true to the underlying physics,
where state is defined at every instant in time. Our
architectural decision to update state in the form
of temporally-continuous State Functions (see
Figure 1) has important implications on the form of
the software requirements produced through State
Analysis. It is therefore worthwhile to introduce the
notion of state timelines as the conceptual
repositories for state knowledge, which also map
into state value containers in the MDS software
architecture.

State Analysis assumes that state evolution is
described on state timelines (see Figure 2), which
are a complete record of a system’s history
(“complete” to the extent that they capture
everything the control system has chosen to
remember about the state, subject to storage
limitations). State timelines provide the
fundamental coordinating mechanism for any
control system developed using State Analysis,
since they describe both knowledge and intent.
This information, together with models of state
behavior, provides everything the control system
needs to predict and plan, and it is available in an
internally consistent form, via state variables.

State timelines also provide a control system with
an efficient mechanism for transporting data
between the ground system and the spacecraft.
For instance, telemetry can be accomplished by
relaying state histories to the ground, and
communication schedules can be relayed as state
histories to the spacecraft. Timelines are a
relatively compact representation of state history,
because states evolve only in particular and
generally predictable ways. That is, they can be
modeled. Therefore, timelines can be transported
much more compactly than conventional time-
sampled data.

4

Because of our adoption of a temporally-
continuous representation of state in the form of
State Functions on a timeline, a state and all of its
derivatives can and should be modeled using a
single state variable, to ensure consistency of
representation (thus avoiding the possibility of
returning inconsistent values for a state and its
derivative).

Representing Uncertainty

In a real system, we never really know states with
complete accuracy or certainty – only a simulator
“knows” state values precisely. The best we can
do is to estimate the value of the state as it
evolves over time. These estimates constitute
state knowledge; it is what we know, and, equally
important, how well we know it. That is, it makes
no sense to represent the estimated value of a
state without also representing the level of
certainty of the estimate. Although State Analysis
asserts that uncertainty must be explicitly
represented along with the state value, it imposes
no restriction on how uncertainty should be
represented. It can be represented in many ways,
e.g., enumerated confidence tags, variance in a
Gaussian estimate, probability mass distribution
over discrete states, etc.

There are multiple benefits to explicitly
representing uncertainty. First, it leads to a more
robust software design, in which estimators can
be honest about the evidence, increasing the
uncertainty in their estimates for conflicting
evidence, missing evidence, and ‘old’ evidence
(see Figure 3). Furthermore, it enables controllers
to exercise caution, and modify their actions
during periods of high uncertainty. Finally, it
allows human operators to be better informed
about the quality of knowledge of the state.

Now that we have defined our notion of state and
described our representation of it, we next turn to
the issue of modeling the behavior of the system
under control.

4. MODELING THE SYSTEM
UNDER CONTROL

State Analysis provides a methodology that allows
us to develop a model of the system under
control. This model represents everything we
need to know for controlling and estimating the
state of the system under control. We note that
traditional systems engineering approaches
capture most of this information in multiple
disparate artifacts (if at all), allowing for potential
inconsistencies. By making the model explicit, the
State Analysis approach consolidates all this
information rigorously in a consistent unambigu-
ous form.

Our model of the system under control is
composed of:
- State Models describing how each state in the

system under control evolves over time and
under the influence of other states;

- Measurement Models describing how each
measurement is affected by various states in
the system under control; and

- Command Models describing how states are
affected by each command (possibly under the
influence of other states).

This model describes the behavior of all hardware
and any software elements in the system under
control, as well as the behavior of any external
systems that affect the state of the system under
control (e.g., environmental effects). It is important
to note that these models are expressed in terms
of true state, and that consideration of uncertainty
in the state estimates is only folded into the
estimation and control algorithms that are
informed by the model. This will be discussed
further in Section 5.

The Modeling Process

State Analysis provides an iterative process for
discovering state variables of the system under
control and for incrementally constructing the
model. The steps in this process are as follows:
1) Identify needs – define the high-level

objectives for controlling the system.
2) Identify state variables that capture what

needs to be controlled to meet the objectives,
and define their representation.

Figure 2: Timelines are used to capture state
knowledge (past estimates and future predic-
tions) and intent (past and future constraints on
state).

Don’t
Know

Don’t
CareOFF

ON

OFF

ON

OFF

ON

OFF

ON

Past Future

time

continuous-valued variable

discrete-valued variable

Now

History compared to plans Predictions informed by plans

Don’t
Know

Don’t
CareOFF

ON

OFF

ON

OFF

ON

OFF

ON

Past Future

time

continuous-valued variable

discrete-valued variable

Now

History compared to plans Predictions informed by plans

Figure 3: The level of uncertainty associated with a
state estimate generally grows over time, and
can decrease with the receipt of additional
evidence by the estimator.

time

envelope
depicts
3σ error

update

time

envelope
depicts
3σ error

update

5

3) Define state models for the identified state
variables – these may uncover additional
state variables that affect the identified state
variables.

4) Identify measurements needed to estimate
the state variables, and define their represen-
tation.

5) Define measurement models for the identified
measurements – these may uncover addi-
tional state variables.

6) Identify commands needed to control the state
variables, and define their representation.

7) Define command models for the identified
commands – these may uncover additional
state variables.

8) Repeat steps 2-7 on all newly discovered
state variables, until every state variable and
effect we care about is accounted for.

9) Return to step 1, this time to identify
supporting objectives suggested by affecting
states (a process called ‘goal elaboration’,
described later), and proceed with additional
iterations of the process until the scope of the
mission has been covered.

This modeling process can be used as part of a
broader iterative incremental software develop-
ment process, in which cycles of the modeling
process can be interwoven with concurrent cycles
of software implementation.

It should be noted that State Analysis provides a
methodology for documenting significant states
and effects as well as the rationale for dismissing
others. If a state or effect is purposely omitted
because it is insignificant, the reason should be
documented.

Example

We now present a simple example to illustrate this
iterative process. Consider the problem of
preparing a rover’s navigation camera to take
picture (step 1). One of the key state variables
associated with this activity is the Camera Power
State (step 2). We select an appropriate state
representation for the Camera Power State: real-
number values in Watts for mean and standard
deviation. For the purposes of this example, we
choose a simple state model for the behavior of
this state variable (step 3): the Camera Power
State = 0 Watt if the Camera Power Switch
Position is Open (or Tripped-Open) or if the Power
Bus Voltage is less than threshold; otherwise,
Camera Power State = 10 Watts if Camera Health
= Healthy, or greater if Camera Health = Short-
Circuit. Note that this model is highly simplified for
the purposes of illustrating the modeling process;
a real model for Camera Power State would
undoubtedly be more complex. As far as model
representation is concerned, State Analysis is
flexible. We provide systems engineers with broad

latitude to capture models in a form that is most
convenient for their specific application.

This state model makes reference to three other
states of the system under control: ‘Camera
Power Switch Position’, ‘Power Bus Voltage’ and
‘Camera Health’. In this example, we assume
there are no direct measurements or commands
associated with Camera Power State (steps 4-7).
This completes our first iteration of the modeling
process.

Let us consider a second iteration, focusing on the
Camera Power Switch Position state variable
(step 2). The representation for this state variable
is discrete, where the switch can be Open,
Closed, or Tripped-Open. We may choose to
specify the state model for this state variable in
the form of a StateChart3 (step 3), which is a
convenient representation for discrete state
models that are fairly commonly used by systems
engineers. This StateChart would show all
nominal and off-nominal transitions between
values of this state variable. The behavior in this
state model would be affected by two other state
variables, ‘Camera Power State’ (a load
overcurrent condition can cause the switch to trip
open) and ‘Camera Power Switch Health’
(nominal transitions between switch states require
that the switch be healthy, i.e., not stuck).

We assume that the power switch has an
associated sensor that provides a measurement
of the switch position, either “open”, “tripped-
open”, or “closed” (step 4). We define the
measurement model (measurement expressed as
a function of its affecting states), as follows
(step 5): if the switch sensor health is Healthy, the
measurement returns the true switch position;
otherwise (i.e., switch sensor health is Stuck-
Reading-Open, Stuck-Reading-Closed, or Stuck-
Reading-Tripped-Open), the measurement returns
the stuck reading, independent of the true switch
position.

This measurement model specifies the
dependence of the measurement not only on the
Camera Power Switch Position state variable, but
also on another as-yet-unspecified state variable:
the ‘Camera Power Switch Position Sensor
Health’. This simple model assumes three
different possible failure modes for the sensor,
corresponding to the sensor readings being
“stuck” at one of the three possible outputs. In a
real model, we would also allow for the possibility
that the sensor could exhibit other failure modes,
such as intermittent random readings. Clearly,
State Analysis promotes early consideration of
component health states and fault modes. This is
in contrast with traditional systems engineering
practice, where consideration of off-nominal
behavior is commonly postponed until later in the
spacecraft design process, and can lead to ad-
hoc fault protection implementation. In State

6

Analysis, fault behaviors are included in the state
models and are treated just like any nominal state;
as a result, fault detection, diagnosis, and
recovery become integral aspects of the design of
the system architecture.

The camera power switch is, by definition, an
actuator. We therefore specify a command that
will allow us to affect a change in the camera
switch position state. We define this command to
include a parameter, to be set by the appropriate
controller, which indicates the desired operation:
“Open-cmd” or “Close-cmd” (step 6). Associated
with this command we define a command model,
which specifies how the Camera Power Switch
Position state variable changes in response to the
command (step 7): if the current switch position is
Open [Closed] and the power switch health is
Healthy, a Close-cmd [Open-cmd] results in the
switch position transitioning to Closed [Open]; if
the current switch position is Tripped-Open and
the power switch health is Healthy, an Open-cmd
results in the switch position transitioning to Open,
whereas a Close-cmd results in no change in the
switch position. Command models are used to
describe instantaneous changes of state; we
ascribe cascading effects and delayed behavior to
the state model.

Figure 4 shows a graphical representation of the
states and effects we have documented thus far.
This representation, which we call a State Effects
Diagram, provides a convenient view of the state
variables in the system under control, and the
physical effects between these state variables.
Measurements are depicted on the State Effects
Diagram as triangles, with incoming effect arrows
from all state variables that appear in the
measurement model. Commands are depicted as
inverted triangles, with an outgoing arrow pointing
to the commanded state variable (Camera Power
Switch Position, in this case), and incoming
arrows from the state variables that have an
impact on the effects of the command (Camera
Power Switch Position and Camera Power Switch
Health, in this case).

We have just stepped through two iterations of the
modeling process. There are state variables in
Figure 4 that require further modeling, so this is
not the end of the process. As we have illustrated,
our modeling approach can lead us a long way
from the states we started from, but this is a good
thing: it allows us to quickly ascertain the scope of
the problem. In the following section, we discuss
how the models are used to design software.

5. USING THE MODEL TO DESIGN
THE CONTROL SYSTEM

The state, measurement and command models
defined as part of the State Analysis process
(described in the previous section) are used
throughout the design of the control system. In

this section, we outline how state, measurement
and command models are used to inform the
design of the control system. In particular, we
discuss the design of the Mission Planning and
Execution functions, and the Estimation and
Control algorithms (recall Figure 1).

Mission Planning and Execution:

As mentioned in Section 2, one of the key
features of State Analysis is that it emphasizes
goal-directed closed-loop operation. The control
architecture in Figure 1 includes a Mission
Planning and Execution function whose role is to
produce and execute plans for accomplishing
high-level mission objectives. Unlike the traditional
“open-loop” approach to space mission planning
and operation, where spacecraft operator intent is
translated into sequences of low-level commands,
we specify plans as temporally-constrained
networks of goals. Goal-directed operation
represents a logical evolution of the spacecraft
control paradigm, allowing operators to generate
closed-loop sequences that implicitly account for
system interactions. It enables (but does not
impose) flexible autonomous operations, by
freeing the ground controllers from having to
worry about the exact state of the spacecraft. It
empowers the spacecraft to accommodate most
surprises without the need for ground intervention
and demonstrates reliability, independent of our
knowledge of the environment. Recent space
missions, including the Cassini and Mars
Exploration Rover spacecraft, have demonstrated
a fair amount of goal-directed behavior. However,
this powerful control paradigm has not yet been
consistently applied across a mission in a way
that allows it to be fully exploited by an onboard or
ground-based reasoning system.

In order to enable goal-directed operation,
systems engineers must define the types of goals
that can be issued, the groups of goals that
achieve higher-level goals (traditionally referred to
as “blocks” or “macros”), and the system-specific
logic needed to correctly plan and execute goals.

Camera
Power State

Camera
Health

Power Bus
Voltage

Camera Power
Switch Position Sensor

Health
Camera

Power Switch
Position Sensor
Measurement

Camera
Power Switch

Position

Camera
Power Switch

Health

Camera
Power Switch

Command

Camera
Power State

Camera
Health

Power Bus
Voltage

Camera Power
Switch Position Sensor

Health
Camera

Power Switch
Position Sensor
Measurement

Camera
Power Switch

Position

Camera
Power Switch

Health

Camera
Power Switch

Command

Figure 4: State Effects Diagram after two iterations
of the modeling process.

7

In this subsection, we first define our notion of
goal; we then show how the model of the system
under control is used to elaborate goals into the
fundamental building blocks of goal networks; and
finally, we briefly address how these building
blocks can be assembled and scheduled into goal
networks for onboard execution.

Goals:

In State Analysis, a goal is defined as a constraint
on the value history of a state variable over a time
interval. As part of the State Analysis process, a
systems engineer specifies a dictionary of goal
types, each with parametric state constraints and
unspecified temporal constraints (see Figure 5).
Spacecraft operators specify instantiations of the
goal types in the goal dictionary to construct
activity plans for accomplishing mission
objectives.

A goal is expressed as an assertion whose
success/failure can be evaluated with respect to
its state variable’s value history (state timeline). It
is important to distinguish between goals and
commands. For example, “At 2:00pm, issue the
close-switch command to the camera heater
power switch” would not be a valid goal; what if
we were to issue the close-switch command,
immediately followed by an open-switch
command? Clearly, we would not have achieved
our underlying objective of initiating the heating of
the camera, even though we did issue the close-
switch command as specified. Goals specify what
to achieve within the system under control, not
how to achieve it within the control system; they
express conditions that should persist over some
time interval, and provide a statement of
operational intent.

Here are some examples of valid goals:
1. “Camera Temperature is between 10 and 20

degrees Celsius from 2:00pm to 3:00pm”
(control goal that specifies a constraint on state
value, to be maintained by controller).

2. “Camera Temperature is transitioning to be
between 10 and 20 degrees Celsius by 2:00
pm” (transitional control goal that achieves the
appropriate precondition for goal #1).

3. “Camera Temperature standard deviation is less
than 0.5 degree Celsius from 1:00 pm until 5:00
pm” (knowledge goal that specifies a constraint
on quality of state knowledge, to be maintained
by estimator).

4. “Camera Temperature mean value, plus or
minus 3-sigma, is in the range 10-20 degrees
Celsius [10 ≤ mean – 3σ ≤ mean + 3σ ≤ 20],
from 2:00 pm to 3:00 pm” (inseparably-
combined control and knowledge goal,
specifying constraints on both state value and
quality of knowledge).

5. “Camera Temperature measurement data
collection state contains at least one measure-

ment less than 10 seconds old, from 1:00 pm
until 5:00 pm” (data goal, specifying a constraint
on the state of a data collection).

Goal Elaborations:

As we discussed in Section 4, our model of the
system under control captures the physical cause-
and-effect relationships between state variables.
Because of these interactions between state
variables, it is clear that there is more to control
than simply asserting a goal on a state variable of
interest, and expecting it to be achieved in stand-
alone fashion, without considering its implications
on other related states in the system. Further-
more, many goals simply cannot be achieved
without also asserting supporting goals on other
state variables that impact our state variables of
interest.

Part of the State Analysis methodology is the
specification of fundamental “blocks” of goals,
which can be assembled into plans and which
account for the causality between state variables
in the system under control. We call these
fundamental blocks goal elaborations. A goal’s
elaboration specifies supporting goals on related
states that may need to be satisfied in order to
achieve the original goal, or alternatively, may
simply make the original goal more likely to
succeed.

Goal elaborations are defined based on
engineering judgment, our model of the system
under control, and the following four rules:
1. A goal on a state variable may elaborate into

concurrent control goals on directly affecting
state variables.

2. A control goal on a state variable elaborates to
a concurrent knowledge goal on the same state

Figure 5: The anatomy of a goal type and an
instantiated goal. Every goal has a starting
timepoint and an ending timepoint. A goal can
be instantiated with a flexible temporal
constraint on its duration, indicated by an
arrow from its starting to its ending timepoint,
labeled with a [min, max] duration window.

Camera Temperature:
is between X and Y

degrees C

Camera Temperature:
is between 10 and 20

degrees C

[1 hr, 2 hrs]

Parametric constraint replaced
by operational constraint

A temporal constraint bounds
the duration of the goal

State Variable

Parametric constraint on the
value of the state variable

Starting Timepoint

Ending Timepoint

Goal
Type:

Instantiated
Goal:

Camera Temperature:
is between X and Y

degrees C

Camera Temperature:
is between 10 and 20

degrees C

[1 hr, 2 hrs]

Parametric constraint replaced
by operational constraint

A temporal constraint bounds
the duration of the goal

State Variable

Parametric constraint on the
value of the state variable

Starting Timepoint

Ending Timepoint

Goal
Type:

Instantiated
Goal:

8

variable (or they may be specified jointly in a
single control and knowledge goal).

3. A knowledge goal on a state variable may
elaborate to concurrent knowledge goals on its
affecting and affected state variables.

4. Any goal can elaborate into preceding goals
(typically on the same state variable). For
example, a “maintenance” goal on a state
variable may elaborate to a preceding transi-
tional goal on the same state variable.

We note that goal elaborations are defined locally
for each goal by considering only direct effects,
that is, effects of state variables that are only a
single step away in the State Effects Diagram.

Let us consider the simple camera power example
to illustrate how to apply the above rules in the
elaboration of goals. We assume for our purposes
that the scope of the simple model is as shown in
Figure 4. Consider the following goal on the
Camera Power State: “Camera Power State is
equal to 10 ± 1 Watts”. Applying the elaboration
rules, our models of the system under control, and
some reasonable engineering judgment, this goal
can be elaborated as shown in Figure 6.

Goal elaboration is an iterative process, so
supporting goals that appear in an elaboration
are, in turn, elaborated. The elaborations chain
together to encompass the full set of relevant
state variable interactions. We can manage the
complexity and scale of the iterative elaboration
process by making judicious engineering
decisions to identify “terminal” goals that require
no further elaboration. Loops in the elaboration
chain are addressed by either engineering the
elaborations to explicitly avoid loops or adopting
an iterative elaboration algorithm that converges
to the final elaborated goal network. We can also
leverage automated algorithms to assemble goal
networks from the individual elaborations and
schedule them; this is the subject of the next
subsection.

Currently, systems engineers produce goal
elaborations by hand, using the aforementioned
elaboration rules. We note that the existence of an
explicit model opens up the possibility of
automatic generation of goal elaborations from the
state models. Further work is needed in the areas
of model representation and model-based
reasoning before such a capability can be
implemented. We see recent progress in the
compilation of model-based programs4 as a
potential solution to this problem.

Before we move on to address the topic of goal
networks, we introduce a mechanism that enables
“reactive” coordination of activity, as opposed to
the more “deliberative” (pre-planned) coordination
we have introduced via elaboration of goals into
supporting goals with explicit constraints. Reactive
execution-time coordination is needed during

activities like rover driving and steering, or attitude
control thrusting, for which it would not be
appropriate to specify explicit goals on individual
rover wheels or thrusters, at plan-time. In State
Analysis, the mechanism we use is called
delegation, because it involves one state variable
delegating the authority over its controller to
another state variable’s controller or estimator.
Not surprisingly, we specify delegation
relationships in terms of our model of the system
under control: an affecting state variable (e.g.,
wheel rotation) can delegate to an affected state
variable (e.g., rover position and heading). Run-
time delegation is enabled via elaboration, where
the affecting state variable authorizes the affected
state variable to send it reactive goals “on-the-fly,”
within allocations established at elaboration time.

Goal Network Scheduling & Execution:

Once the necessary set of goal elaborations has
been defined, they can be encoded into the
ground and flight software, enabling ground
operators to simply specify desired behavior in
terms of high-level goals on the state variables of
interest, and allowing the Mission Planning and
Execution system to automatically:
- elaborate these goals into the set of appropriate

supporting goals;
- merge these elaborated goals into the current

goal network, which includes all background
goals (capturing flight rules and constraints) and
previously-scheduled activities;

- schedule the augmented goal network to satisfy
any specified temporal constraints and to
eliminate any conflicts that arise; and

- verify the consistency of the full goal network
that results.

Figure 6: The elaboration for the “Camera Power
State equals 10 ± 1 Watts” goal. Per Rule #1,
our control goal elaborates into concurrent
supporting control goals on the affecting state
variables. Per Rule #2, it elaborates into a
knowledge goal that asserts that the uncertainty
must be limited to σ ≤ 0.2 Watts. Per Rule #4,
our goal must be immediately preceded by a
goal that results in Camera Power reaching the
10 Watt level. Since our goal is a control goal,
Rule #3 does not apply.

Camera Power:
equals 10 +/- 1 W

Camera Power Switch Position:
is Closed

Camera Health:
is Healthy

Rule #1

Camera Power:
is transitioning to 10 +/- 1 W

Rule #4

Power Bus Voltage:
is greater than threshold

Camera Power:
is known with σ <= 0.2 W

Rule #2

Camera Power:
equals 10 +/- 1 W

Camera Power Switch Position:
is Closed

Camera Health:
is Healthy

Rule #1

Camera Power:
is transitioning to 10 +/- 1 W

Rule #4

Power Bus Voltage:
is greater than threshold

Camera Power:
is known with σ <= 0.2 W

Rule #2

9

This is an automated, iterative search process
that may require backtracking, and heuristics are
used for efficiency to guide the search (details on
this process have been previously published5).
This process must be informed by the models of
the system under control provided by systems
engineers. The means by which the models
inform the scheduling is through a handful of logic
functions specified during State Analysis. For
instance, we must specify the logic associated
with merging multiple concurrent goals on a given
state variable. This corresponds to an intersection
operation performed on the goals’ state
constraints. The result of this merging of
constraints is called an executable goal, or x-goal.
X-goals reside on state timelines, and capture
intent on state (recall Figure 2).

State Analysis also specifies the logic used to
propagate state effects across the system and
project state into the future. This logic is derived
directly from the state models described in
Section 4. This projection logic provides a
mechanism for generalized resource management
for the system under control.

Finally, we must also specify the logic associated
with checking the consistency of the resulting x-
goal timelines. This involves checking each x-goal
for achievability, and checking that each
consecutive pair of x-goals is compatible (i.e., that
the transition between x-goals is achievable).

Scheduling is finished when all the goals in all the
timelines have been scheduled, all the effects of
all the x-goals have been combined and merged
with the affected timeline, and all the x-goals are
consistent and their transitions are consistent.

Once the goal network has been fully elaborated
and scheduled, it is ready to be executed.5 Just as
in goal elaboration and scheduling, the execution
of a goal network is informed by the models of the
system under control provided by systems
engineers. We must specify the logic functions
that dictate execution as part of the State Analysis
process. The two primary execution-related
functions that need to be specified are the logic
associated with checking that it is appropriate to
transition from executing one x-goal to the next x-
goal on the timeline, and the logic associated with
checking for violation of a goal’s state constraint
(“goal failure”).

In summary, the products of State Analysis are
used to inform the Mission Planning and
Execution functions of the control system. This
pays off by producing sequences that are
verifiably executable, self-monitoring, robust
during nominal operations, and reactive during off-
nominal circumstances.

Estimation and Control:

In the description of the State Analysis control
architecture (Section 2), we emphasized the

importance of making a clear distinction between
estimation and control, and we introduced
estimators and controllers as the achievers of
desired state. In this section we will briefly discuss
how the model of the system under control is used
to inform the algorithm development of the
estimators and controllers.

The use of models for estimation and control is
not new – estimation and control theory is
founded on the notion of using models of the
system’s state dynamics, measurements and
command effects to compute estimates of current
state and decide on appropriate control actions.
This principle is commonly applied to the
estimation and control of spacecraft position and
attitude, structural dynamics, and temperature
states, to name a few examples. In State
Analysis, we simply demand that state models for
all state variables of interest be documented,
extending this paradigm across the whole
spacecraft system.

As discussed previously, state estimation is a
process of interpreting information to achieve a
requested quality of state knowledge, expressed
in the form of a knowledge goal. Estimators
update a state variable's value as well as its level
of certainty. State control is a process of reacting
to state information to generate commands that
affect the state of the system under control in
such a way as to satisfy a specified control goal.
Controllers may react to the value of a state
variable, or its level of certainty. Estimators and
controllers may be invoked periodically, or in an
event-driven fashion (e.g., conditioned on the
arrival of new data or a change of estimated
state), depending on the specific application.

State Analysis adopts the following architectural
rules relating to estimators and controllers:
- Estimators are the only architectural compo-

nents that can update state variables.
- Every state variable is updated by one (and only

one) estimator, and controlled by at most one
controller (some state variables are not
controllable).

- An estimator can update multiple state
variables.

- Estimators are the only components that can
process hardware measurements.

- Controllers are the only components that can
issue commands to hardware adapters.

- A controller can control multiple state variables.
- A controller can issue commands to one or

more hardware adapters.
- A hardware adapter can receive commands

from at most one controller.
- An estimator or a controller can issue state

constraints to one or more controllers (of other
state variables) that have been delegated to it.

- Estimators and controllers can retrieve state
information from state variables.

10

An important part of the State Analysis process is
the specification of estimator and controller
algorithms. These algorithms may be modal (e.g.,
state machines), continuous (e.g., Kalman filter
estimators, linear controllers), or any other design
that is consistent with the model-based nature of
State Analysis. We encourage, but do not require,
that estimators and controllers make explicit use
of the models we introduced in Section 4, but we
presume that their translation into software will be
as direct as possible (recall the basic principle
from Section 1). State Analysis imposes no
additional estimation or control issues beyond
those driven by the problem itself, though it
demands that estimators and controllers consider
both nominal and off-nominal behavior of the
system under control, and support degraded
operations where possible.

Figure 7 shows a UML (Unified Modeling
Language6) collaboration diagram excerpt for our
Camera Power Switch example from Section 4
(the term collaboration diagram reflects the fact
that a control system is a collection of software
components “collaborating” to achieve a common
purpose). These diagrams provide a map of the
software component interconnections and
information flow. They show how State Analysis
produces requirements on the software, which
can be mapped directly into software components
of a modular state-based architecture, such as
MDS (see Section 7).

The construction of collaboration diagrams is
informed by our state, measurement and
command models. For example, our Camera
Power Switch Position estimator can access:
- measurements that are affected by the Camera

Power Switch Position (in this case, the Camera
Power Switch Sensor measurement);

- other state variables that affect the Camera
Power Switch Sensor measurement (i.e., inputs
to the measurement model; in this case,
Camera Power Switch Sensor Health); and

- other state variables that affect the Camera
Power Switch Position (in this case, our
estimator uses knowledge of Camera Power
Switch Health, but not Camera Power State).

Similarly, our Camera Power Switch Position
controller needs information on other state
variables that affect the results of the switch
command (i.e., inputs to the command model; in
this case, Camera Power Switch Health).

Executable Models

State Analysis makes models available for all
state variables in the system under control. This
opens up the possibility of using the state models
explicitly during estimation and control. This
powerful idea, commonly referred to as
“executable models”, is being leveraged in the
field of model-based autonomy. Model-based
executives, like Livingstone7 (which was flight-

validated on the Deep Space 1 spacecraft),
Livingstone28 and Titan9, have been developed
and demonstrated on a variety of mission
scenarios and spacecraft designs.

We have begun to investigate how to leverage the
principles of model-based autonomy in the context
of the State Analysis. Our work to date in this area
has shown significant promise, and we are
pursuing ongoing work in integrating model-based
execution capability into MDS.

6. DOCUMENTING THE MODELS AND
SOFTWARE REQUIREMENTS

The model of the system under control that we
produce during State Analysis compiles
information traditionally documented in a variety of
systems engineering artifacts, including the
Hardware Functional Requirements, the Failure
Modes and Effects Analysis, the Command
Dictionary, the Telemetry Dictionary and the
Hardware-Software Interface Control Document.
Rather than break this information up into
disparate artifacts, we capture all our model
information in a State Database, which has been
structured to prompt the State Analysis process.
We use the same State Database to document
the requirements on the control system that are
produced by State Analysis, including goal
specifications and elaborations, estimator and
controller algorithms, and software component
connectivity information (as depicted in
collaboration diagrams).

The State Database is shared, central, and
globally accessible to promote consistency. It is
accessible by a variety of tools, including a
graphical client tool that provides multiple
interfaces for access to State Analysis data,
including a text-based record editor and a diagram
editor. It is designed to be capable of generating a
variety of reports from the information it contains,
including the set of documents described above.
The State Database thus provides systems
engineers with a tool that consolidates their
system and software requirements in a single

Figure 7: Collaboration diagram showing the
estimation and control pattern for the Camera
Power Switch Position state variable. [SV:
state variable; HA: hardware adapter]

Update State

Camera
Power Switch

HA

Camera Power
Switch Position

Estimator

Camera Power
Switch Health

SV

Camera Power
Switch Sensor

Health SV

Monitor Command
Produce Measurement

Camera Power
Switch Position

Controller

Issue Command

Get State
Camera Power
Switch Position

SV

Get State

Get
State

Get
State

Update State

Camera
Power Switch

HA

Camera
Power Switch

HA

Camera Power
Switch Position

Estimator

Camera Power
Switch Position

Estimator

Camera Power
Switch Health

SV

Camera Power
Switch Health

SV

Camera Power
Switch Sensor

Health SV

Camera Power
Switch Sensor

Health SV

Monitor Command
Produce Measurement

Camera Power
Switch Position

Controller

Camera Power
Switch Position

Controller

Issue Command

Get State
Camera Power
Switch Position

SV

Camera Power
Switch Position

SV

Get State

Get
State

Get
State

11

place, and allows them to inspect and review this
information in whatever form is most appropriate.

7. THE MISSION DATA SYSTEM
SOFTWARE ARCHITECTURE

MDS is an embedded software architecture,
currently under development at the Jet Propulsion
Laboratory (JPL). Its overarching goal is to
provide a multi-mission information and control
architecture for robotic exploration spacecraft, that
will be used in all aspects of a mission: from
development and testing to flight and ground
operations. The regular structure of State Analysis
is replicated in the MDS architecture, with every
State Analysis product having a direct counterpart
in the software implementation. This mapping is
accomplished via a component architecture. Each
state variable, estimator, controller, and hardware
adapter is embodied as a component. State
Analysis defines the interconnection topology
among these components according to the
canonical patterns and standard interfaces
described in this paper; it provides the required
interface details through the definition of state
functions, measurements, commands, goals; it
provides the methods needed for planning,
scheduling and execution; and it defines the
functionality of each component to accomplish the
desired intent. The component architecture
supports modular reuse, and helps to assure that
the system is constructed in accordance with the
State Analysis requirements.

A C++ implementation of MDS has been
demonstrated on multiple hardware platforms,
including the Rocky7 and Rocky8 rovers at JPL.
In addition, an MDS adaptation is currently being
developed for the Entry, Descent and Landing
(EDL) stage of the Mars Science Laboratory
spacecraft, scheduled for launch in 2009. This
flight software prototype currently runs in a
workstation environment, against a simulation of
the EDL scenario. A simpler Java implementation
of the MDS architecture, called GoldenGate,10 has
also been demonstrated on the Rocky7 rover.

8. CONCLUSION

State Analysis is a Systems Engineering
methodology that improves on the current state-
of-the-practice. It does so by leveraging a state-
based control architecture to produce require-
ments on system and software design in the form
of explicit models of system behavior. This
provides a common language for systems and
software engineers to communicate, and thus
bridges the usual gap between software
requirements and software implementation. This
provides a powerful framework for engineering
robust embedded systems, and also promotes the
infusion of advanced model-based autonomy
technologies. Therefore, we believe State
Analysis is a systems engineering methodology

for today's complex systems that can carry us well
into the future.

ACKNOWLEDGMENTS

The work described in this paper was performed
at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration.
We wish to thank the rest of the Mission Data
System development team, and the Mars Science
Laboratory mission personnel who have
participated in the maturation of the State Analysis
methodology and tools.

REFERENCES

1. D. Dvorak, R. Rasmussen, G. Reeves, and A.
Sacks, “Software architecture themes in JPL's
Mission Data System,” Proceedings of the
AIAA Guidance, Navigation, and Control
Conference, number AIAA-99-4553, 1999.

2. D. Dvorak, R. Rasmussen, and T. Starbird,
“State Knowledge Representation in the
Mission Data System,” Proceedings of the
IEEE Aerospace Conference, 2002.

3. D. Harel, “Statecharts: A visual formulation for
complex systems,” Science of Computer
Programming, 8(3):231-274, 1987.

4. S. Chung, Decomposed symbolic approach to
reactive planning, S.M. Thesis, MIT Dept. of
Aeronautics and Astronautics, Cambridge,
MA, 2003.

5. A. Barrett, R. Knight, R. Morris, and R.
Rasmussen, “Mission Planning and Execution
Within the Mission Data System,” Proceed-
ings of the International Workshop on Plan-
ning and Scheduling for Space, 2004.

6. G. Booch, J. Rumbaugh, and I. Jacobsen,
The Unified Modeling Language User Guide,
Addison Wesley Longman, Inc., 1999.

7. B.C. Williams and P. Nayak, “A model-based
approach to reactive self-configuring sys-
tems,” Proceedings of the 13th National
Conference on Artificial Intelligence (AAAI-
96), volume 2, pages 971-978, 1996.

8. J. Kurien and P. Nayak, “Back to the future for
consistency-based trajectory tracking,”
Proceedings of the 18th National Conference
on Artificial Intelligence (AAAI-02), pages 370-
377, 2000.

9. B.C. Williams, M. Ingham, S. Chung, and P.
Elliott, “Model-based programming of intelli-
gent embedded systems and robotic space
explorers,” Proceedings of the IEEE,
91(1):212-237, 2003.

10. D. Dvorak, et al., “Project Golden Gate:
Towards Real-Time Java in Space Missions,”
Proceedings of the 7th IEEE International
Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2004), 2004.

